| 1 | // tQuantizeWu.cpp  |
| 2 | //  |
| 3 | // This module implements Wu quantization by Xiaolin Wu. The original header is included below. Modifications include:  |
| 4 | // * Placing it in a namespace.  |
| 5 | // * Consolidating the state parameters so that it is threadsafe (no global state).  |
| 6 | // * Bridging to a standardized Tacent interface.  |
| 7 | // * Convert to C++ syntax (original is pure C).  |
| 8 | // * No exit or printf on error.  |
| 9 | //  |
| 10 | // The algrithm works well for larger numbers of colours (generally 128 to 256 or 255) but it can handle values as  |
| 11 | // low as 2.  |
| 12 | //  |
| 13 | // Modifications Copyright (c) 2022-2024 Tristan Grimmer.  |
| 14 | // Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby  |
| 15 | // granted, provided that the above copyright notice and this permission notice appear in all copies.  |
| 16 | //  |
| 17 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL  |
| 18 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,  |
| 19 | // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN  |
| 20 | // AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR  |
| 21 | // PERFORMANCE OF THIS SOFTWARE.  |
| 22 | //  |
| 23 | // Here is the original code header from Xiaolin Wu:  |
| 24 | //  |
| 25 | // Having received many constructive comments and bug reports about my previous C implementation of my color quantizer  |
| 26 | // (Graphics Gems vol. II, p. 126-133), I am posting the following second version of my program (hopefully 100% healthy)  |
| 27 | // as a reply to all those who are interested in the problem.  |
| 28 | //  |
| 29 | // C Implementation of Wu's Color Quantizer (v. 2) (see Graphics Gems vol. II, pp. 126-133)  |
| 30 | // Author: Xiaolin Wu, Dept. of Computer Science, Univ. of Western Ontario, London, Ontario N6A 5B7, wu@csd.uwo.ca  |
| 31 | // Algorithm: Greedy orthogonal bipartition of RGB space for variance minimization aided by inclusion-exclusion tricks.  |
| 32 | // For speed no nearest neighbor search is done. Slightly better performance can be expected by more sophisticated but  |
| 33 | // more expensive versions. The author thanks Tom Lane at Tom_Lane@G.GP.CS.CMU.EDU for much of additional documentation  |
| 34 | // and a cure to a previous bug.  |
| 35 | //  |
| 36 | // Free to distribute, comments and suggestions are appreciated.  |
| 37 | #include <Math/tColour.h>  |
| 38 | #include "Image/tQuantize.h"  |
| 39 | namespace tImage {  |
| 40 |   |
| 41 |   |
| 42 | namespace tQuantizeWu  |
| 43 | {  |
| 44 | // Constants.  |
| 45 | const int MaxColour = 256; // For 256 colours, fixed arrays need 8kb, plus space for the image.  |
| 46 | const int Red = 2;  |
| 47 | const int Green = 1;  |
| 48 | const int Blue = 0;  |
| 49 |   |
| 50 | // We're putting all state on the stack (heap would work too). No globals. This allows the quantizer to be thread-safe.  |
| 51 | struct State  |
| 52 | {  |
| 53 | // Histogram is in elements 1..HISTSIZE along each axis, element 0 is for base or marginal value. These must start out 0.  |
| 54 | float m2[33][33][33];  |
| 55 | int32 wt[33][33][33];  |
| 56 | int32 mr[33][33][33];  |
| 57 | int32 mg[33][33][33];  |
| 58 | int32 mb[33][33][33];  |
| 59 | uint8 *Ir, *Ig, *Ib;  |
| 60 | int size; // Image size (width*height).  |
| 61 | int K; // Colour look-up table size (palette size).  |
| 62 | uint16* Qadd;  |
| 63 | };  |
| 64 |   |
| 65 | struct Box  |
| 66 | {  |
| 67 | // X0 is min value, exclusive. X1 is max value, inclusive.  |
| 68 | int r0; int r1; int g0; int g1; int b0; int b1;  |
| 69 | int vol;  |
| 70 | };  |
| 71 |   |
| 72 | // Build 3-D color histogram of counts, r/g/b, c^2. At conclusion of the histogram step, we can interpret:  |
| 73 | // wt[r][g][b] = sum over voxel of P(c)  |
| 74 | // mr[r][g][b] = sum over voxel of r*P(c), similarly for mg, mb  |
| 75 | // m2[r][g][b] = sum over voxel of c^2*P(c)  |
| 76 | // Actually each of these should be divided by 'size' to give the usual interpretation of P() as ranging from 0 to 1  |
| 77 | // but we needn't do that here.  |
| 78 | void Hist3d(State&, int32* vwt, int32* vmr, int32* vmg, int32* vmb, float* m2);  |
| 79 |   |
| 80 | // Compute cumulative moments. We now convert histogram into moments so that we can rapidly calculate the sums of  |
| 81 | // the above quantities over any desired box.  |
| 82 | void M3d(int32* vwt, int32* vmr, int32* vmg, int32* vmb, float* m2);  |
| 83 |   |
| 84 | // Compute sum over a box of any given statistic.  |
| 85 | int32 Vol(Box* cube, int32 mmt[33][33][33]);  |
| 86 |   |
| 87 | // The next two routines allow a slightly more efficient calculation of Vol() for a proposed subbox of a given box.  |
| 88 | // The sum of Top() and Bottom() is the Vol() of a subbox split in the given direction and with the specified new  |
| 89 | // upper bound.  |
| 90 | //  |
| 91 | // Compute part of Vol(cube, mmt) that doesn't depend on r1, g1, or b1 (depending on dir).  |
| 92 | int32 Bottom(Box* cube, uint8 dir, int32 mmt[33][33][33]);  |
| 93 |   |
| 94 | // Compute remainder of Vol(cube, mmt), substituting pos for r1, g1, or b1 (depending on dir).  |
| 95 | int32 Top(Box* cube, uint8 dir, int pos, int32 mmt[33][33][33]);  |
| 96 |   |
| 97 | // Compute the weighted variance of a box NB: as with the raw statistics, this is really the variance * size.  |
| 98 | float Var(State&, Box* cube);  |
| 99 |   |
| 100 | // We want to minimize the sum of the variances of two subboxes. The sum(c^2) terms can be ignored since their sum  |
| 101 | // over both subboxes is the same (the sum for the whole box) no matter where we split. The remaining terms have a  |
| 102 | // minus sign in the variance formula, so we drop the minus sign and MAXIMIZE the sum of the two terms.  |
| 103 | float Maximize(State&, Box* cube, uint8 dir, int first, int last, int* cut, int32 whole_r, int32 whole_g, int32 whole_b, int32 whole_w);  |
| 104 |   |
| 105 | int Cut(State&, Box* set1, Box* set2);  |
| 106 | void Mark(Box* cube, int label, uint8* tag);  |
| 107 |   |
| 108 | // By the time this is called all parameters must be valid. It assumes the first 3 arguments are > 0 and the latter 3 non-null.  |
| 109 | void Quantize(int numColours, int width, int height, const tPixel3b* pixels, tColour3b* destPalette, uint8* destIndices);  |
| 110 | }  |
| 111 |   |
| 112 |   |
| 113 | void tQuantizeWu::Hist3d(State& state, int32* vwt, int32* vmr, int32* vmg, int32* vmb, float* m2)  |
| 114 | {  |
| 115 | int ind, r, g, b;  |
| 116 | int inr, ing, inb, table[256];  |
| 117 | int32 i;  |
| 118 |   |
| 119 | for (i = 0; i < 256; ++i)  |
| 120 | table[i] = i*i;  |
| 121 |   |
| 122 | for (i = 0; i < state.size; ++i)  |
| 123 | {  |
| 124 | r = state.Ir[i]; g = state.Ig[i]; b = state.Ib[i];  |
| 125 | inr = (r>>3)+1;   |
| 126 | ing = (g>>3)+1;   |
| 127 | inb = (b>>3)+1;   |
| 128 | state.Qadd[i] = ind = (inr<<10)+(inr<<6)+inr+(ing<<5)+ing+inb;  |
| 129 | // [inr][ing][inb]  |
| 130 | ++vwt[ind];  |
| 131 | vmr[ind] += r;  |
| 132 | vmg[ind] += g;  |
| 133 | vmb[ind] += b;  |
| 134 | m2[ind] += (float)(table[r]+table[g]+table[b]);  |
| 135 | }  |
| 136 | }  |
| 137 |   |
| 138 |   |
| 139 | void tQuantizeWu::M3d(int32* vwt, int32* vmr, int32* vmg, int32* vmb, float* m2)  |
| 140 | {  |
| 141 | uint16 ind1, ind2;  |
| 142 | uint8 i, r, g, b;  |
| 143 | int32 line, line_r, line_g, line_b, area[33], area_r[33], area_g[33], area_b[33];  |
| 144 | float line2, area2[33];  |
| 145 |   |
| 146 | for (r = 1; r <= 32; ++r)  |
| 147 | {  |
| 148 | for (i = 0; i <= 32; ++i)  |
| 149 | {  |
| 150 | area[i]=area_r[i]=area_g[i]=area_b[i]=0;  |
| 151 | area2[i] = 0.0f;  |
| 152 | }  |
| 153 | for (g = 1; g <= 32; ++g)  |
| 154 | {  |
| 155 | line = line_r = line_g = line_b = 0;  |
| 156 | line2 = 0.0f;  |
| 157 | for (b = 1; b <= 32; ++b)  |
| 158 | {  |
| 159 | ind1 = (r<<10) + (r<<6) + r + (g<<5) + g + b; // [r][g][b]  |
| 160 | line += vwt[ind1];  |
| 161 | line_r += vmr[ind1];   |
| 162 | line_g += vmg[ind1];   |
| 163 | line_b += vmb[ind1];  |
| 164 | line2 += m2[ind1];  |
| 165 | area[b] += line;  |
| 166 | area_r[b] += line_r;  |
| 167 | area_g[b] += line_g;  |
| 168 | area_b[b] += line_b;  |
| 169 | area2[b] += line2;  |
| 170 | ind2 = ind1 - 1089; // [r-1][g][b]  |
| 171 | vwt[ind1] = vwt[ind2] + area[b];  |
| 172 | vmr[ind1] = vmr[ind2] + area_r[b];  |
| 173 | vmg[ind1] = vmg[ind2] + area_g[b];  |
| 174 | vmb[ind1] = vmb[ind2] + area_b[b];  |
| 175 | m2[ind1] = m2[ind2] + area2[b];  |
| 176 | }  |
| 177 | }  |
| 178 | }  |
| 179 | }  |
| 180 |   |
| 181 |   |
| 182 | int32 tQuantizeWu::Vol(Box* cube, int32 mmt[33][33][33])  |
| 183 | {  |
| 184 | return  |
| 185 | (  |
| 186 | mmt[cube->r1][cube->g1][cube->b1]  |
| 187 | -mmt[cube->r1][cube->g1][cube->b0]  |
| 188 | -mmt[cube->r1][cube->g0][cube->b1]  |
| 189 | +mmt[cube->r1][cube->g0][cube->b0]  |
| 190 | -mmt[cube->r0][cube->g1][cube->b1]  |
| 191 | +mmt[cube->r0][cube->g1][cube->b0]  |
| 192 | +mmt[cube->r0][cube->g0][cube->b1]  |
| 193 | -mmt[cube->r0][cube->g0][cube->b0]  |
| 194 | );  |
| 195 | }  |
| 196 |   |
| 197 |   |
| 198 | int32 tQuantizeWu::Bottom(Box* cube, uint8 dir, int32 mmt[33][33][33])  |
| 199 | {  |
| 200 | switch(dir)  |
| 201 | {  |
| 202 | case Red:  |
| 203 | return  |
| 204 | (  |
| 205 | -mmt[cube->r0][cube->g1][cube->b1]  |
| 206 | +mmt[cube->r0][cube->g1][cube->b0]  |
| 207 | +mmt[cube->r0][cube->g0][cube->b1]  |
| 208 | -mmt[cube->r0][cube->g0][cube->b0]  |
| 209 | );  |
| 210 |   |
| 211 | case Green:  |
| 212 | return  |
| 213 | (  |
| 214 | -mmt[cube->r1][cube->g0][cube->b1]  |
| 215 | +mmt[cube->r1][cube->g0][cube->b0]  |
| 216 | +mmt[cube->r0][cube->g0][cube->b1]  |
| 217 | -mmt[cube->r0][cube->g0][cube->b0]  |
| 218 | );  |
| 219 |   |
| 220 | case Blue:  |
| 221 | return  |
| 222 | (  |
| 223 | -mmt[cube->r1][cube->g1][cube->b0]  |
| 224 | +mmt[cube->r1][cube->g0][cube->b0]  |
| 225 | +mmt[cube->r0][cube->g1][cube->b0]  |
| 226 | -mmt[cube->r0][cube->g0][cube->b0]  |
| 227 | );  |
| 228 | }  |
| 229 |   |
| 230 | return 0;  |
| 231 | }  |
| 232 |   |
| 233 |   |
| 234 | int32 tQuantizeWu::Top(Box* cube, uint8 dir, int pos, int32 mmt[33][33][33])  |
| 235 | {  |
| 236 | switch(dir)  |
| 237 | {  |
| 238 | case Red:  |
| 239 | return  |
| 240 | (  |
| 241 | mmt[pos][cube->g1][cube->b1]  |
| 242 | -mmt[pos][cube->g1][cube->b0]  |
| 243 | -mmt[pos][cube->g0][cube->b1]  |
| 244 | +mmt[pos][cube->g0][cube->b0]  |
| 245 | );  |
| 246 |   |
| 247 | case Green:  |
| 248 | return  |
| 249 | (  |
| 250 | mmt[cube->r1][pos][cube->b1]  |
| 251 | -mmt[cube->r1][pos][cube->b0]  |
| 252 | -mmt[cube->r0][pos][cube->b1]  |
| 253 | +mmt[cube->r0][pos][cube->b0]  |
| 254 | );  |
| 255 |   |
| 256 | case Blue:  |
| 257 | return  |
| 258 | (  |
| 259 | mmt[cube->r1][cube->g1][pos]  |
| 260 | -mmt[cube->r1][cube->g0][pos]  |
| 261 | -mmt[cube->r0][cube->g1][pos]  |
| 262 | +mmt[cube->r0][cube->g0][pos]  |
| 263 | );  |
| 264 | }  |
| 265 | return 0;  |
| 266 | }  |
| 267 |   |
| 268 |   |
| 269 | float tQuantizeWu::Var(State& state, Box* cube)  |
| 270 | {  |
| 271 | float dr, dg, db, xx;  |
| 272 |   |
| 273 | dr = float( Vol(cube, mmt: state.mr) );  |
| 274 | dg = float( Vol(cube, mmt: state.mg) );  |
| 275 | db = float( Vol(cube, mmt: state.mb) );  |
| 276 | xx = state.m2[cube->r1][cube->g1][cube->b1]  |
| 277 | -state.m2[cube->r1][cube->g1][cube->b0]  |
| 278 | -state.m2[cube->r1][cube->g0][cube->b1]  |
| 279 | +state.m2[cube->r1][cube->g0][cube->b0]  |
| 280 | -state.m2[cube->r0][cube->g1][cube->b1]  |
| 281 | +state.m2[cube->r0][cube->g1][cube->b0]  |
| 282 | +state.m2[cube->r0][cube->g0][cube->b1]  |
| 283 | -state.m2[cube->r0][cube->g0][cube->b0];  |
| 284 |   |
| 285 | return (xx - (dr*dr+dg*dg+db*db)/(float)Vol(cube,mmt: state.wt));  |
| 286 | }  |
| 287 |   |
| 288 |   |
| 289 | float tQuantizeWu::Maximize(State& state, Box* cube, uint8 dir, int first, int last, int* cut, int32 whole_r, int32 whole_g, int32 whole_b, int32 whole_w)  |
| 290 | {  |
| 291 | int32 half_r, half_g, half_b, half_w;  |
| 292 | int32 base_r, base_g, base_b, base_w;  |
| 293 | int i;  |
| 294 | float temp, max;  |
| 295 |   |
| 296 | base_r = Bottom(cube, dir, mmt: state.mr);  |
| 297 | base_g = Bottom(cube, dir, mmt: state.mg);  |
| 298 | base_b = Bottom(cube, dir, mmt: state.mb);  |
| 299 | base_w = Bottom(cube, dir, mmt: state.wt);  |
| 300 | max = 0.0;  |
| 301 | *cut = -1;  |
| 302 | for (i = first; i < last; ++i)  |
| 303 | {  |
| 304 | half_r = base_r + Top(cube, dir, pos: i, mmt: state.mr);  |
| 305 | half_g = base_g + Top(cube, dir, pos: i, mmt: state.mg);  |
| 306 | half_b = base_b + Top(cube, dir, pos: i, mmt: state.mb);  |
| 307 | half_w = base_w + Top(cube, dir, pos: i, mmt: state.wt);  |
| 308 |   |
| 309 | // Now half_x is sum over lower half of box, if split at i.  |
| 310 | // Subbox could be empty of pixels. Never split into an empty box.  |
| 311 | if (half_w == 0)  |
| 312 | continue;  |
| 313 | else  |
| 314 | temp = ((float)half_r*half_r + (float)half_g*half_g + (float)half_b*half_b)/half_w;  |
| 315 |   |
| 316 | half_r = whole_r - half_r;  |
| 317 | half_g = whole_g - half_g;  |
| 318 | half_b = whole_b - half_b;  |
| 319 | half_w = whole_w - half_w;  |
| 320 |   |
| 321 | // Subbox could be empty of pixels. Never split into an empty box.  |
| 322 | if (half_w == 0)  |
| 323 | continue;  |
| 324 | else  |
| 325 | temp += ((float)half_r*half_r + (float)half_g*half_g + (float)half_b*half_b)/half_w;  |
| 326 |   |
| 327 | if (temp > max)  |
| 328 | {  |
| 329 | max=temp;  |
| 330 | *cut=i;  |
| 331 | }  |
| 332 | }  |
| 333 |   |
| 334 | return max;  |
| 335 | }  |
| 336 |   |
| 337 |   |
| 338 | int tQuantizeWu::Cut(State& state, Box* set1, Box* set2)  |
| 339 | {  |
| 340 | uint8 dir;  |
| 341 | int32 cutr, cutg, cutb;  |
| 342 | float maxr, maxg, maxb;  |
| 343 | int32 whole_r, whole_g, whole_b, whole_w;  |
| 344 |   |
| 345 | whole_r = Vol(cube: set1, mmt: state.mr);  |
| 346 | whole_g = Vol(cube: set1, mmt: state.mg);  |
| 347 | whole_b = Vol(cube: set1, mmt: state.mb);  |
| 348 | whole_w = Vol(cube: set1, mmt: state.wt);  |
| 349 |   |
| 350 | maxr = Maximize(state, cube: set1, dir: Red, first: set1->r0+1, last: set1->r1, cut: &cutr, whole_r, whole_g, whole_b, whole_w);  |
| 351 | maxg = Maximize(state, cube: set1, dir: Green, first: set1->g0+1, last: set1->g1, cut: &cutg, whole_r, whole_g, whole_b, whole_w);  |
| 352 | maxb = Maximize(state, cube: set1, dir: Blue, first: set1->b0+1, last: set1->b1, cut: &cutb, whole_r, whole_g, whole_b, whole_w);  |
| 353 |   |
| 354 | if ((maxr >= maxg) && (maxr >= maxb))  |
| 355 | {  |
| 356 | dir = Red;  |
| 357 |   |
| 358 | // Can't split the box.  |
| 359 | if (cutr < 0)  |
| 360 | return 0;  |
| 361 | }  |
| 362 | else if ((maxg >= maxr) && (maxg >= maxb))  |
| 363 | dir = Green;  |
| 364 | else  |
| 365 | dir = Blue;  |
| 366 |   |
| 367 | set2->r1 = set1->r1;  |
| 368 | set2->g1 = set1->g1;  |
| 369 | set2->b1 = set1->b1;  |
| 370 |   |
| 371 | switch (dir)  |
| 372 | {  |
| 373 | case Red:  |
| 374 | set2->r0 = set1->r1 = cutr;  |
| 375 | set2->g0 = set1->g0;  |
| 376 | set2->b0 = set1->b0;  |
| 377 | break;  |
| 378 |   |
| 379 | case Green:  |
| 380 | set2->g0 = set1->g1 = cutg;  |
| 381 | set2->r0 = set1->r0;  |
| 382 | set2->b0 = set1->b0;  |
| 383 | break;  |
| 384 |   |
| 385 | case Blue:  |
| 386 | set2->b0 = set1->b1 = cutb;  |
| 387 | set2->r0 = set1->r0;  |
| 388 | set2->g0 = set1->g0;  |
| 389 | break;  |
| 390 | }  |
| 391 |   |
| 392 | set1->vol=(set1->r1-set1->r0)*(set1->g1-set1->g0)*(set1->b1-set1->b0);  |
| 393 | set2->vol=(set2->r1-set2->r0)*(set2->g1-set2->g0)*(set2->b1-set2->b0);  |
| 394 | return 1;  |
| 395 | }  |
| 396 |   |
| 397 |   |
| 398 | void tQuantizeWu::Mark(Box* cube, int label, uint8* tag)  |
| 399 | {  |
| 400 | int r, g, b;  |
| 401 | for(r=cube->r0+1; r<=cube->r1; ++r)  |
| 402 | for(g=cube->g0+1; g<=cube->g1; ++g)  |
| 403 | for(b=cube->b0+1; b<=cube->b1; ++b)  |
| 404 | tag[(r<<10) + (r<<6) + r + (g<<5) + g + b] = label;  |
| 405 | }  |
| 406 |   |
| 407 |   |
| 408 | void tQuantizeWu::Quantize(int numColours, int width, int height, const tPixel3b* pixels, tColour3b* destPalette, uint8* destIndices)  |
| 409 | {  |
| 410 | Box cube[MaxColour];  |
| 411 | uint8 lut_r[MaxColour], lut_g[MaxColour], lut_b[MaxColour];  |
| 412 | int next;  |
| 413 | int32 i, weight;  |
| 414 | int k;  |
| 415 | float vv[MaxColour], temp;  |
| 416 | int numPixels = width*height;  |
| 417 |   |
| 418 | // The arrays in the state are required to be initialized to 0 (and 0.0f for the float array).  |
| 419 | State state;  |
| 420 | tStd::tMemset(dest: &state, val: 0, numBytes: sizeof(State));  |
| 421 |   |
| 422 | state.K = numColours;  |
| 423 | state.size = numPixels;  |
| 424 |   |
| 425 | // This is where the indices will be stored.  |
| 426 | state.Qadd = new uint16[numPixels];  |
| 427 |   |
| 428 | // Input R,G,B components into Ir, Ig, Ib.  |
| 429 | state.Ir = new uint8[numPixels];  |
| 430 | state.Ig = new uint8[numPixels];  |
| 431 | state.Ib = new uint8[numPixels];  |
| 432 | for (int y = 0; y < height; y++)  |
| 433 | {  |
| 434 | for (int x = 0; x < width; x++)  |
| 435 | {  |
| 436 | int index = x + y*width;  |
| 437 | const tPixel3b& pixel = pixels[index];  |
| 438 | state.Ir[index] = pixel.R;  |
| 439 | state.Ig[index] = pixel.G;  |
| 440 | state.Ib[index] = pixel.B;  |
| 441 | }  |
| 442 | }  |
| 443 |   |
| 444 | Hist3d(state, vwt: (int32*)state.wt, vmr: (int32*)state.mr, vmg: (int32*)state.mg, vmb: (int32*)state.mb, m2: (float*)state.m2);  |
| 445 |   |
| 446 | // These won't be accessed again.  |
| 447 | delete[] state.Ib;  |
| 448 | delete[] state.Ig;  |
| 449 | delete[] state.Ir;  |
| 450 |   |
| 451 | M3d(vwt: (int32*)state.wt, vmr: (int32*)state.mr, vmg: (int32*)state.mg, vmb: (int32*)state.mb, m2: (float*)state.m2);  |
| 452 | cube[0].r0 = cube[0].g0 = cube[0].b0 = 0;  |
| 453 | cube[0].r1 = cube[0].g1 = cube[0].b1 = 32;  |
| 454 | next = 0;  |
| 455 |   |
| 456 | for (i = 1; i < state.K; ++i)  |
| 457 | {  |
| 458 | if (Cut(state, set1: &cube[next], set2: &cube[i]))  |
| 459 | {  |
| 460 | // Volume test ensures we won't try to cut one-cell box.  |
| 461 | vv[next] = (cube[next].vol>1) ? Var(state, cube: &cube[next]) : 0.0;  |
| 462 | vv[i] = (cube[i].vol>1) ? Var(state, cube: &cube[i]) : 0.0;  |
| 463 | }  |
| 464 | else  |
| 465 | {  |
| 466 | vv[next] = 0.0; // Don't try to split this box again.  |
| 467 | i--; // Didn't create box i.  |
| 468 | }  |
| 469 |   |
| 470 | next = 0; temp = vv[0];  |
| 471 | for (k = 1; k <= i; ++k)  |
| 472 | {  |
| 473 | if (vv[k] > temp)  |
| 474 | {  |
| 475 | temp = vv[k];  |
| 476 | next = k;  |
| 477 | }  |
| 478 | }  |
| 479 |   |
| 480 | if (temp <= 0.0)  |
| 481 | {  |
| 482 | state.K = i+1;  |
| 483 | break;  |
| 484 | }  |
| 485 | }  |
| 486 |   |
| 487 | // The m2 float array will not be accessed further now.  |
| 488 | uint8 tag[33*33*33];  |
| 489 | for (k = 0; k < state.K; ++k)  |
| 490 | {  |
| 491 | Mark(cube: &cube[k], label: k, tag);  |
| 492 | weight = Vol(cube: &cube[k], mmt: state.wt);  |
| 493 | if (weight)  |
| 494 | {  |
| 495 | lut_r[k] = Vol(cube: &cube[k], mmt: state.mr) / weight;  |
| 496 | lut_g[k] = Vol(cube: &cube[k], mmt: state.mg) / weight;  |
| 497 | lut_b[k] = Vol(cube: &cube[k], mmt: state.mb) / weight;  |
| 498 | }  |
| 499 | else  |
| 500 | {  |
| 501 | // k is a bogus box.  |
| 502 | lut_r[k] = lut_g[k] = lut_b[k] = 0;   |
| 503 | }  |
| 504 | }  |
| 505 |   |
| 506 | for (i = 0; i < state.size; ++i)  |
| 507 | state.Qadd[i] = tag[state.Qadd[i]];  |
| 508 |   |
| 509 | // Populate the palette. lut_r, lut_g, and lut_b contain the lookup table colours.  |
| 510 | tAssert(state.K <= numColours);  |
| 511 | for (int ind = 0; ind < state.K; ind++)  |
| 512 | {  |
| 513 | destPalette[ind].Set(r: lut_r[ind], g: lut_g[ind], b: lut_b[ind]);  |
| 514 | }  |
| 515 |   |
| 516 | // Copy the indices into the supplied dest array. These are stored in Qadd.  |
| 517 | for (int ind = 0; ind < numPixels; ind++)  |
| 518 | {  |
| 519 | tAssert( state.Qadd[ind] <= 255 );  |
| 520 | destIndices[ind] = uint8(state.Qadd[ind]);  |
| 521 | }  |
| 522 |   |
| 523 | delete[] state.Qadd;  |
| 524 | }  |
| 525 |   |
| 526 |   |
| 527 | //  |
| 528 | // The functions below make up the external interface.  |
| 529 | //  |
| 530 |   |
| 531 |   |
| 532 | bool tQuantizeWu::QuantizeImage  |
| 533 | (  |
| 534 | int numColours, int width, int height, const tPixel3b* pixels, tColour3b* destPalette, uint8* destIndices,  |
| 535 | bool checkExact  |
| 536 | )  |
| 537 | {  |
| 538 | if ((numColours < 2) || (numColours > 256) || (width <= 0) || (height <= 0) || !pixels || !destPalette || !destIndices)  |
| 539 | return false;  |
| 540 |   |
| 541 | if (checkExact)  |
| 542 | {  |
| 543 | bool success = tQuantize::QuantizeImageExact(numColours, width, height, pixels, destPalette, destIndices);  |
| 544 | if (success)  |
| 545 | return true;  |
| 546 | }  |
| 547 |   |
| 548 | Quantize(numColours, width, height, pixels, destPalette, destIndices);  |
| 549 | return true;  |
| 550 | }  |
| 551 |   |
| 552 |   |
| 553 | bool tQuantizeWu::QuantizeImage  |
| 554 | (  |
| 555 | int numColours, int width, int height, const tPixel4b* pixels, tColour3b* destPalette, uint8* destIndices,  |
| 556 | bool checkExact  |
| 557 | )  |
| 558 | {  |
| 559 | if ((numColours < 2) || (numColours > 256) || (width <= 0) || (height <= 0) || !pixels || !destPalette || !destIndices)  |
| 560 | return false;  |
| 561 |   |
| 562 | tPixel3b* pixels3 = new tPixel3b[width*height];  |
| 563 | for (int p = 0; p < width*height; p++)  |
| 564 | pixels3[p].Set( r: pixels[p].R, g: pixels[p].G, b: pixels[p].B );  |
| 565 |   |
| 566 | bool success = QuantizeImage(numColours, width, height, pixels: pixels3, destPalette, destIndices, checkExact);  |
| 567 | delete[] pixels3;  |
| 568 | return success;  |
| 569 | }  |
| 570 |   |
| 571 |   |
| 572 | }  |
| 573 | |